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Overview

* Motivation
— Q1: Why do we need additive manufacturing (AM) ¢
— Q2: What are the physical processes, are they newe
— Q3: Why isitrelevant for superalloys?

« Challenges: Defects & Microstructural Heterogeneities

« Current Directions: Modeling, Make, and Measuring

» Future Directions & Opportunities:
— Sire-Specific Microstructure Confrol
— Refractory Alloys for Harsh Conditions Designed for AM

e Summary
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Q1: By providing design flexibility, Additive
Manufacturing is considered as the Renaissance
of manufacturing
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FIGURE 4 Two complex trusses supgest the difficulfly of prediciive onalysis.
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« Today: Additive Manufacturing of Nickel Superalloys
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Q2: What are the physical
processes during AMe

— Complex Geometries Electron

— Energy Deposition Beam

— Melting & Powder
Addition

— Evaporation &
Condensation

— Heat & Mass Transfer
— Solidification

— Solid-State Phase
Transformation

— Repeated Heating and Plasma
Cooling — Thermal
Gyrations
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Q3: Can we use AM to arrive at complex
geomertries and site-specific propertiese
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* |n early 1986, GE researchers invented dual heat
treatment to arrive at spatial grain structure conftrol.
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with complex boundary conditions...

Physical processes are similar to Welding & Joining, but

Design Process  Process Geometrical  Microstructure Qualification
Selection Controls Conformity Control & Standards
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Why is it relevant to superalloys?
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Reality of Interest
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Weld Mechanics
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Most Desirable Materials For Exireme and Harsh
Environments are Difficult to Process: Materials

Susceptible to Cracking

Weldabillity of Ni-base

Superalloys
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Most Desirable Materials For Exireme and Harsh
Environments are Difficult 1o Process: Process,

Geometry, and Material Linked
Crack Formationin Mar-M247
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Key parameter: Movement of the weld poo],
rather than the power source!
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Current Directions: Inconel
/38 Airfoil Case Study
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Enabling Scan Path Opftimization through
Computational Modeling

« Temporal and spatial distribution of cracking tendency
» Peaktensile stress locations coincided with cracks
« Geometry and default scan pattern interaction

Height = Height =
28.05 mm 35.40 mm

v



Enabling Scan Path Opftimization through
omputational Modeling
Standard Alternative
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Manufacturing of Defect Prone Ni-base
Superalloys Through by EBM

172 Airfoils

Material: Inconel 738LC (Ni-284-1)

Cr Co Ti Al Ta W Nb Mo
16 85 | 345345 [1.7/5] 26 | 0.8 [1.75

1600lbs x 4 powder uses/reuses
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What are the Available Data Streams

Image data
(in-situ & ex-situ)

Thermo-
mechanics
(FEM)
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Driving the Next Materials Revolution

Creating a Framework for Coupling Data Analytics
with Advanced Manufacturing

Ex-situ &
Properties

'DREAM.3D
Open Source Edition

Data Management &
Tracking

Signal Processing
Computer Vision
Image Processing

n-D Data
Visualization

Modeling & Simulation

Data Analytics &
Machine Learnir

Process

Optimization
Certification, Verification
& Validation



Al for CT Reconstruction and Defect Detection

ANN For CT Data Reconstruction
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Fuse Intent and Sensor Data to Begin Creating
Digital Twins
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Merging and Managing of Data Streams

Defect
Predictions

Neural ini Defect
Network Labels

Geometry

Image Registered Annotation
Registration Images Tool

Temporal
Data
Mapping

Build
Quality
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Merging and Managing of Data Streams

Defect
Predictions

Neural raining Defect
Network Set Labels

‘———————

Image Registered Annotation Integrate - .
Registration Images Tool Defect Data Digital Twin
A
Machine |
Logs

Temporal
Data
Mapping

Build

Quality
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Opportunities: Data
Driven Microstructures
and Alloy Design

10" 4 Scan Strategy
Scan Strategy 2 -
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Data Driven Microstructure Development

Fatigue-resistant Hy brid microstructure
Components

A

Ll‘}
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Point Heat Source Controlfor Structure Control

Al Driven Scan Algorithms

- Frontier wu“y.,..,
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Future of Data Driven Scan Strategies

Metallic materials for 3D printing

0019

Future
Al Informed Scan .
016-2018 Strategies Microsfructure
Engineered Optimized
Scan Components
2015 Strategies

emonstration
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AM of Refractory Metals for Extreme Environments

Complex
Geometries

Thin-walled | 2
Structures |

* Next-generation nuclear energy will requi
components from hard-to-manufacture re
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Eliminating Cracking
and Porosity
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Integrating Materials Design with Process
Opftimization for Additive Manufacturing

Microstructural modeling

———————————————————————————
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Summary

« PhysicalProcesses of AM: Many of the
physics, heat and mass transfer,
solidification and solid-state
transformations are the same as welding
and joining with complex boundary
conditfions.

« Challenges: Defect formationand
microstructural heterogeneities are
affected by interaction between
geometry, process, and alloy chemistry!

« Current Directions: Fusion based AM has
been demonstrated as a reliable
technology for fabricating non-weldable
Ni-base superalloys for critical rotating
applications.

« Opportunities: AM allows for site-specific
control of microstructure in Ni-base
alloys through thermal management,
phase stability andkinetics, evenin

% OAK RIDGE complex geometries. Extendable to
National Laboratory refractory materials




